379 research outputs found

    A priori L∞L^{\infty}-estimates for degenerate complex Monge-Amp\`ere equations

    Full text link
    We study families of complex Monge-Amp\`ere equations, focusing on the case where the cohomology classes degenerate to a non big class. We establish uniform a priori L∞L^{\infty}-estimates for the normalized solutions, generalizing the recent work of S. Kolodziej and G. Tian. This has interesting consequences in the study of the K\"ahler-Ricci flow.Comment: 6 page

    Plurisubharmonic functions with weak singularities

    Full text link
    We study the complex Monge-Amp\`ere operator in bounded hyperconvex domains of \C^n. We introduce a scale of classes of weakly singular plurisubharmonic functions : these are functions of finite weighted Monge-Amp\`ere energy. They generalize the classes introduced by U.Cegrell, and give a stratification of the space of (almost) all unbounded plurisubharmonic functions. We give an interpretation of these classes in terms of the speed of decreasing of the Monge-Amp\`ere capacity of sublevel sets and solve associated complex Monge-Amp\`ere equations.Comment: 15 pages, dedicated to Christer Kiselman on the occasion of his retiremen

    Green Currents for Meromorphic Maps of Compact K\"ahler Manifolds

    Full text link
    We consider the dynamics of meromorphic maps of compact K\"ahler manifolds. In this work, our goal is to locate the non-nef locus of invariant classes and provide necessary and sufficient conditions for existence of Green currents in codimension one.Comment: Statement of Theorem 1.5 is slightly improved. Proposition 5.2 and Theorem 5.3 are adde

    Clinical trial simulation to evaluate power to compare the antiviral effectiveness of two hepatitis C protease inhibitors using nonlinear mixed effect models: a viral kinetic approach.

    Get PDF
    International audienceBACKGROUND: Models of hepatitis C virus (HCV) kinetics are increasingly used to estimate and to compare in vivo drug's antiviral effectiveness of new potent anti-HCV agents. Viral kinetic parameters can be estimated using non-linear mixed effect models (NLMEM). Here we aimed to evaluate the performance of this approach to precisely estimate the parameters and to evaluate the type I errors and the power of the Wald test to compare the antiviral effectiveness between two treatment groups when data are sparse and/or a large proportion of viral load (VL) are below the limit of detection (BLD). METHODS: We performed a clinical trial simulation assuming two treatment groups with different levels of antiviral effectiveness. We evaluated the precision and the accuracy of parameter estimates obtained on 500 replication of this trial using the stochastic approximation expectation-approximation algorithm which appropriately handles BLD data. Next we evaluated the type I error and the power of the Wald test to assess a difference of antiviral effectiveness between the two groups. Standard error of the parameters and Wald test property were evaluated according to the number of patients, the number of samples per patient and the expected difference in antiviral effectiveness. RESULTS: NLMEM provided precise and accurate estimates for both the fixed effects and the inter-individual variance parameters even with sparse data and large proportion of BLD data. However Wald test with small number of patients and lack of information due to BLD resulted in an inflation of the type I error as compared to the results obtained when no limit of detection of VL was considered. The corrected power of the test was very high and largely outperformed what can be obtained with empirical comparison of the mean VL decline using Wilcoxon test. CONCLUSION: This simulation study shows the benefit of viral kinetic models analyzed with NLMEM over empirical approaches used in most clinical studies. When designing a viral kinetic study, our results indicate that the enrollment of a large number of patients is to be preferred to small population sample with frequent assessments of VL

    Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization Bound

    Get PDF
    We investigate a stochastic counterpart of majority votes over finite ensembles of classifiers, and study its generalization properties. While our approach holds for arbitrary distributions, we instantiate it with Dirichlet distributions: this allows for a closed-form and differentiable expression for the expected risk, which then turns the generalization bound into a tractable training objective.The resulting stochastic majority vote learning algorithm achieves state-of-the-art accuracy and benefits from (non-vacuous) tight generalization bounds, in a series of numerical experiments when compared to competing algorithms which also minimize PAC-Bayes objectives -- both with uninformed (data-independent) and informed (data-dependent) priors

    Univalent Foundations and the UniMath Library

    Get PDF
    We give a concise presentation of the Univalent Foundations of mathematics outlining the main ideas, followed by a discussion of the UniMath library of formalized mathematics implementing the ideas of the Univalent Foundations (section 1), and the challenges one faces in attempting to design a large-scale library of formalized mathematics (section 2). This leads us to a general discussion about the links between architecture and mathematics where a meeting of minds is revealed between architects and mathematicians (section 3). On the way our odyssey from the foundations to the "horizon" of mathematics will lead us to meet the mathematicians David Hilbert and Nicolas Bourbaki as well as the architect Christopher Alexander
    • 

    corecore